Strategies to overcome the implementation and financial challenges of PM-KUSUM Components A&C

18 Jan 2023

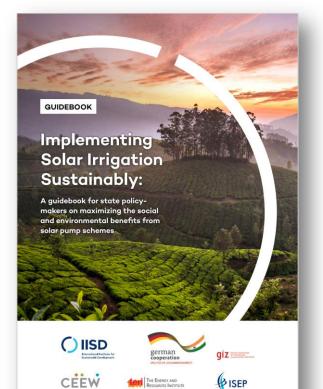
## **Project consortium**












## **Guidebook on PM-KUSUM**

### Phase-I

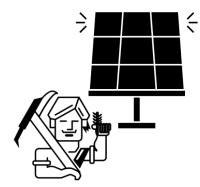
### **Solar pumps**

### PM-KUSUM Components B & C(IPS)

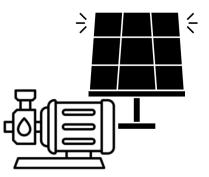


## Phase- II

PM-KUSUM Components A & C (FLS)

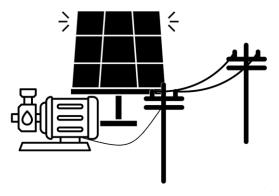

Solar

feeders


Under development

## **PM-KUSUM** scheme

### Three components are designed with different objectives

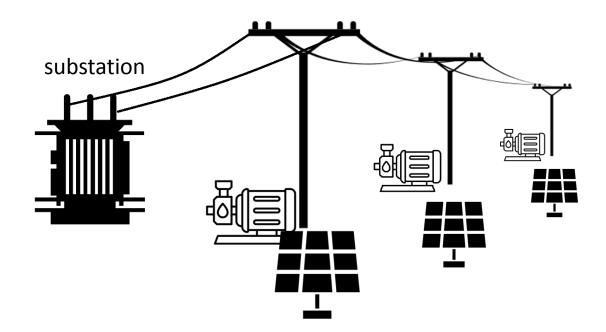


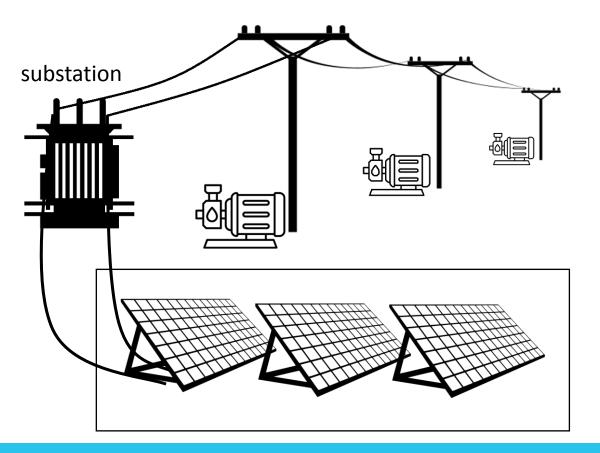

**Component A** 



**Component B** 

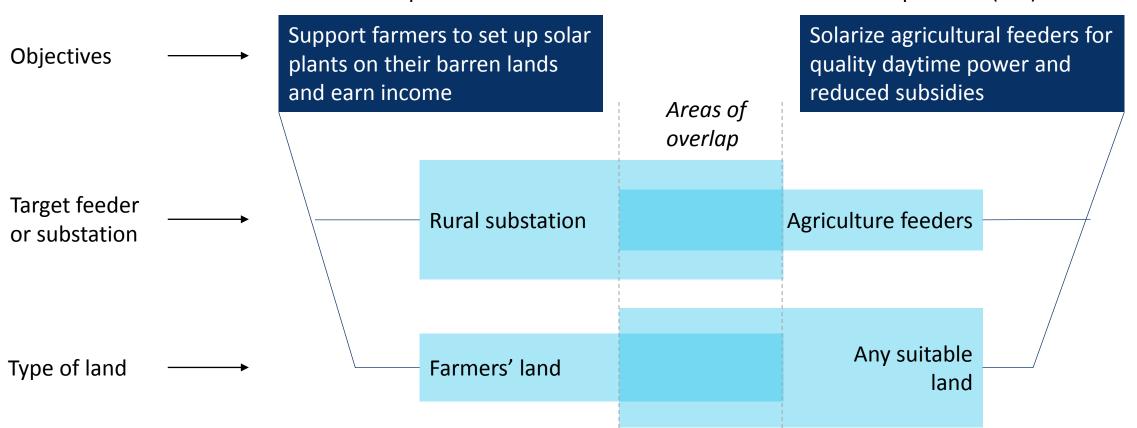
Setting up 0.5-2 MW solar plants on barren and uncultivable lands of farmers, allowing an additional income Off-grid solar pumps for farmers using diesel pump or do not have access to irrigation





**Component C** 

Solarization of gridconnected pumps for assured day-time power and to reduce subsidy **Component-C** 

### Individual pump solarization

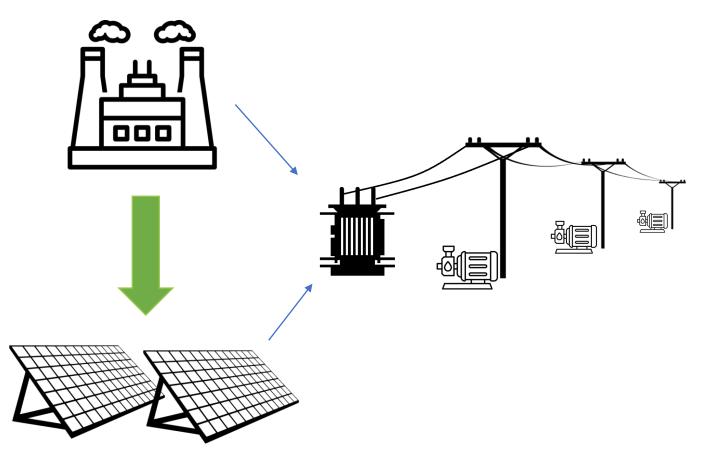

### **Feeder-level solarization**





## **Component-A vs Component-C (FLS)**

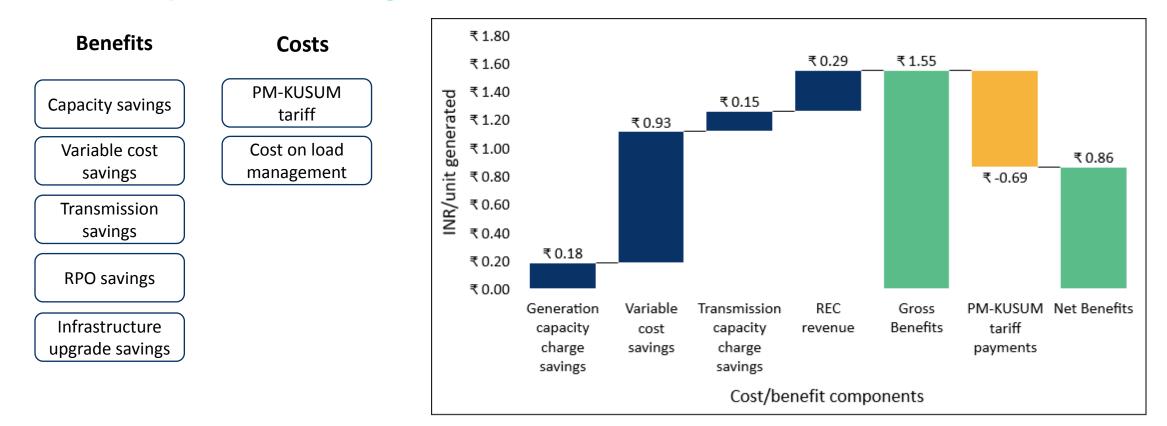
### The objectives are different, but the results may overlap




Component A

Component C(FLS)

## Impact of Component-A or Component-C(FLS)


No change in the power supply side, only change in the power procurement side



- Power procurement for the target feeder changes from conventional sources to PM-KUSUM power plant
- No change in the distribution side
- No metering is needed

## **Cost-benefit analysis**

### Both components offers significant benefits to the state



This analysis is based on the VGRS model developed by <u>CEEW</u>

## **Progress in other states**

### Most have struggled to elicit interest from developers

| State          | Component | Tender quantum<br>(MW) | Date of first tender | PPAs signed |
|----------------|-----------|------------------------|----------------------|-------------|
| Haryana        | A         | 200 MW                 | 13-Jan-2022          | 10 MW       |
| Gujarat        | C (FLS)   | 102.5 MW               | 14-Dec-2021          | 1.2 MW      |
| Madhya Pradesh | C (FLS)   | 1258 MW                | 26-Apr-2022          | 120 MW      |
| Kerala         | C (FLS)   | 11 MW                  | 19-Apr-2022          | 0 MW        |
| Punjab         | C (FLS)   | 54 MW                  | 12-Aug-2021          | 0 MW        |
| Uttar Pradesh  | C (FLS)   | (EoI for land)         | 07-Sep-2021          | 0 MW        |
| Maharashtra    | MSKVY     | 6304 MW                | 07-Jan-2018          | 2853 MW     |

## What is holding back developers?

Our conversations with developers revealed multiple concerns

## Land-related challenges

### **Developers flagged several** challenges

- Scouting and • identifying suitable land parcels
- Negotiating Right of • Way
- Land for construction of bus bay and switchgears

# **Assessment:** Landowner Maharashtra assessment **Negotiation:**

### Land Bank initiative in several states

#### Information:

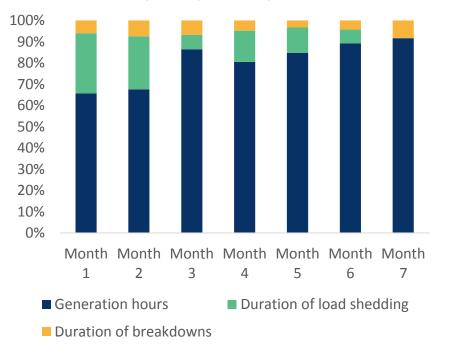
Online portal to invite interest from land owners. E.g.: Odisha

- State/discom officials assess the land parcels for feasibility. E.g.:
- State to use substation GIS and land records data to automate the
- State/discom officials supports developers in negotiation of right of way for dedicated feeder.

Developer

## Grid unavailability and voltage variation

- Grid availability at distribution level is often less than 95%
- ➢ Voltage often falls below 90% pu affecting the system


### **Guarantee a minimum % of grid availability**

- Some states guaranteed a minimum percentage of grid availability to allay developers concerns
- > State compensates any shortfall at a pre-determined tariff

### **Targeted improvement of substation infrastructure**

- Bifurcation of feeders and adequate reactive power compensation
- > PMKUSUM-RDSS convergence

Percentage of grid availability for a pilot power plant

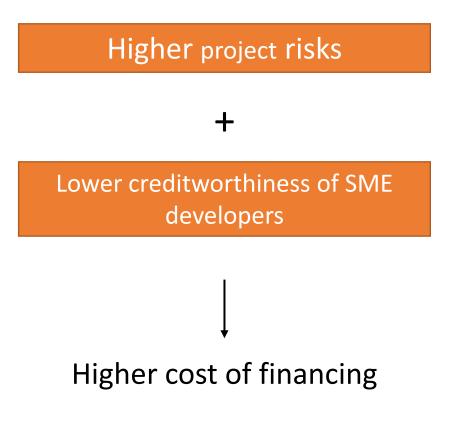


Source: Authors' analysis based on data from Padole et al. (2022)

## **Developers' profile**

### Only SMEs and solar-rooftop developers show interest in the scheme

- Most big developers reluctant to participate in the scheme due to high logistical overheads for them
- Gujarat's experience
  - Initial tenders did not elicit response
  - Now SME developers and solar rooftop developers relaxed technical criteria
  - Allowed joint ventures (JV) to participate
- Similar experience in Madhya Pradesh, Maharashtra


## **Offtaker risks**

Payment delays from the discoms could severely impact cash flow for developers, especially SMEs. It also impacts the cost of financing for developers

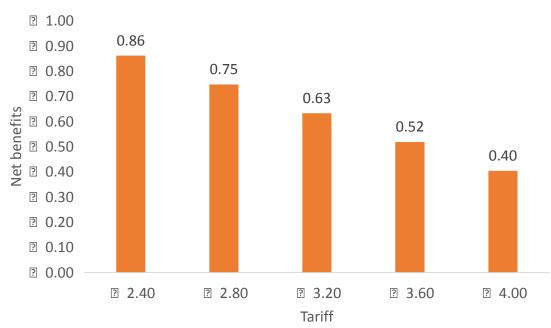
- Unconditional letter of credit: Developers expressed higher preference for discoms ready to issue LC. But LC encashing is tedious and MSMEs hope for solid steps to ensure timely payment
- **State government guarantee:** Sovereign guarantee in PPAs can reduce the risk perception and thus financing cost
- **CPSU intermediaries:** Discoms can rope in NTPC/SECI as intermediaries to implement the schemes. CPSUs provide payment security to developers

# **Higher financing cost**

States can facilitate low-cost financing



Alternative financing facilities. Examples:


- Concessional loans from development finance institutions
- Credit enhancement measures:
  - Credit default fund
  - Securitization

## Is tariff commensurate to risks?

### **Reason for high tariff bids**

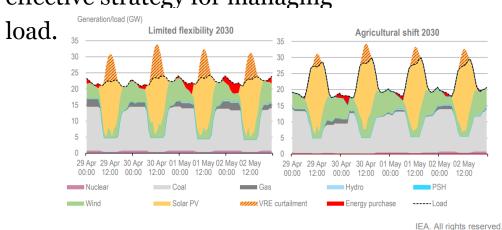
- Higher capital cost for small solar plants
  - BCD & GST changes and increase in international market price pushed capital cost to >4.5 Cr per MW
  - SME developers don't have scale to negotiate lower prices
- Higher O&M cost per MW
  - More manpower due to dispersed installations
- Logistical overheads
  - Land scouting and RoW issues

### Impact of high tariff on discom



#### Net benefit at different tariff levels

## **Other potential challenges and concerns**


### Challenges can be solved through intelligent planning

**Impact on load management**: When the share of solar power increases in the energy mix, shifting agriculture load to daytime would be the most costeffective strategy for managing Feeder segregation: PM-KUSUM works best when feeders are segregated.

• Virtual segregation is also possible

**Seasonality of agriculture consumption**: Strategic feeder selection and plant-sizing can resolve this concern

- Optimal feeder selection criteria:
  - 1. Feeders with significant agriculture load
  - 2. Substations in which nonagriculture load is also significant
- Optimal plant sizing
  - 1. Analysis of base load in the new power supply scenario
  - 2. Sizing based on the base load



# **Thank You!**

For more information:

Email: <u>arahman@iisd.org</u>, <u>ssharma@iisd.org</u> <u>rishu@cstep.in</u> <u>mallik@cstep.in</u>